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Abstract

I discuss our current understanding of cosmic string evolution, and

focus on the question of small scale structure on strings, where most

of the disagreements He. I present a physics] picture designed to put
the role of the small scale structure into more intuitive terms. In this

picture one can see how the small scale structure can feed back in a

major way on the overall scaling solution. I also argue that it is easy

for small scale numerical errors to feed back in just such a way. The

intuitive discussion presented here may form the basis for an analytic

treatment of the small scale structure, which I argue in any case would

be extremely valuable in filling the gaps in our present understanding

of cosmic string evolution.

1 Introduction

The last year has seen further advances in our intuitive and analytical under-

standing of cosmic string networks [1,2,3,4,5]. Some of these advances were

presented in other papers at this workshop. Unfortunately, we still find our-

selves relying on computers to understand many important aspects of cosmic

strings. Still worse, different computer programs give diiTerent answers to
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the sa_me physical questions. StiU worse yet, the differences can be traced to

differences in the algorithms at the scale of resolution.

Any numerical approximation to continuum physics has a "scale of res-

olution" which by definition is where numerical errors are made. When one

embarks on a numerical project it is with the hope that these errors will not

have a large effect on the physics one wishes to extract from the calculation.

In the best of all possible worlds we would be in the happy postion today of

having two [1,2] (going on three[6,7]) different numerical schemes all telling

us the same things about cosmic string physics. Instead, we are busy trying

to understand which numerical errors are better at approximating physics.

In the early days of cosmic strings we hoped that one scale, Rs (the

Hubble radius) was the oniy important scale. The cosmic strings would

simply enter a scaling solution for which all important physics occurred on

scales close to RH. Since then we have come to appreciate string statistical

mechanics [8,9] which tells us that there is another scale, namely "0", in

the problem. A box of cosmic string wii1 try to equ_brateand convert all

the long string into the smallest possible loops. The expanding universe _nd

the existence of non seIf-intersecting loops stop the equilibration process.

However, to what small scale the equillbration process is allowed to proceed

becomes a more deIicate question. For example, any chance to interact which

is artificlal]y put in would drive the scale of smallest loops down even further.

If physical interactions are negiected, artificially large loops would be allowed

to survive. In this talk I try to develop an intuitive picture of how the small

scale structure evolves and how it can feed back on the whole string network.

I advocate this intuitive picture as the starting point for a more thorough

analytical description of small scale physics on cosmic strings.

I wiU also discuss a somewhat different issue. As I have just mentioned,

the physics which determines the smallest physical scale in the problem is

very dellcate. In principle, however, such problems can still be handled

numerically if the resolution scale can be made small enough. It is possible,

however, that different numerical algorithms could give different physical

pictures no matter" how small the resolution scale is made. I will suggest

that it is easy, in the case of cosmic strings, to introduce numerical errors on

the scale of resolution which profoundly affect the large scale physics. These

effects can remain finite even for arbitrarily small resolution scales.

I should say at the outset that I do not consider myself the first to become
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concerned with small scale structure on string networks. Most notably, Ben-

nett and Bouchet [2,4,5,10,11] have been articulating some of these concerns,

and have gone to great lengths to develop numerical simulations which can

keep track of small scale structure. The new simulations by Allen and Shel-

lard [6] also pay particular attention to small scale structure on the strings.

In the process of thinking through the material presented here I have be-

come more sympathetic to the point of view that small scale structure may

be present on the strings, and may cause at least some deviations from the

standard scaling behavior. I hope to pass along these sympathies in this

talk. However, I feel the point has yet to be proven, particularly because

of the possibility that we are being mislead by numerical artifacts. Since

the possibility of substantial numerical artifacts due to enhanced small scale

structure has received relatively little attention, I will be emphasizing this

possibility here.

1.1 Differing pictures of cosmic string physics

Before plunging into the details, let us assess what is at stake. After all, there

are many aspects of string evolution on which there is general agreement. The

one scale model works very well at describing the evolution of long strings,

which do indeed scale with the Hubble radius. The long strings are described

as random walks with a "step size" _ (_ RH) which is also roughly their mean

separation. This behavior is maintained as RH grows via the breaking off of

pieces of long string in the form of loops.

It is also becoming clear that almost all the gravitational impact of the

strings will be clue to these long strings [12]. Thus, the relationship between

cosmic strings and the formation of large scale structure in the universe can

be studied (up to factors O(1)) without understanding any of the unresolved

issues in cosmic string evolution. The overall density of long strings is uncer-

tain by no more than a factor of four, which is not serious given the current

understandlng of structure formation. (Actually, some of the issues I will

raise in this talk suggest that the uncertainties in the long string denstiy

could be underestimates.)

The real confusion has to do with the sizes of loops coming off the network

of long strings. Although they are almost certainly too small to compete

gravitationally with the long strings, the small loops hold the key to whether
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cosmicstrings are ruled out altogether. The issue here is the gravity wave

bound as determined from millisecond pulsar timing [13]. In most models

with cosmic strings the dominant decay channel for cosmic string loops is

into gravity waves. The absence of gravity wave effects in m_..Uisecond pulsar

timing experiments puts bounds on the density in gravity waves today.

It turns out that the smaller the loops are initially, the more easily the

gravity wave bound is avoided. The results of present simulations differ

greatly as to the sizes of typical loops coming off the network, and thus on

the nature of the gravity wave bound. One group, Albrecht and Turok (AT)

[i] finds that the bound is on the verge of completely ruling out the most

interesting cosmic string models, while another, Bennett and Bouchet (BB)

[2], finds the bound to be much looser.

So it is the question of small loops sizes where the most substantial uncer-

tainties and disagreements lle. In fact, the real differences between the two

conflicting simulations lie not so much in the sizes of loops that are produced,

but in the trends that are observed. The AT simulations are consistent with

the loop production scaling with Rs. The BB simulations suggest the loop

production scale decreases compared with the Hubble radius. It is when

these different trends are extrapolated over cosmological time scales that the

physical consequences differ signii_cantly.

2 Investigating the differences

When I first heard of the trends observed in the BB simulation I was quite

surprised, and I tried to find an intuitive picture that would support their

results. What I will do now is describe what I find surprising about the BB

results, and what I have learned in trying to get a physical feeling for what is

going on. Much of the material presented here has emerged from discussions

Nell Turok and I have had on this subject [14].

I take as my starting point the one scale model, which everyone agrees

describes the long strings quite well. This model was first proposed by Kibble

[15], and it has been further developed in [10] and [1] . In this model the

long strings, or at least their large scale features, are random walks of step

size _. The mean separation of the strings is also O(_) so the string length

density is oc _-_. It is generally agreed that the long string can start from



just about any sufficiently "random" initial conditions and reach the "fixed

point" scaling solution. When the scaling solution is reached, _ evolves in

proportion to RH. We are still dependent on the numerical simulations to

determine the the constant of proportionality. The one scale model has also

been shown to apply to the network as it approaches scaling [1].

The main idea behind the one scale model is that loop chopping process

stabilizes when all length scales are the same, up to geometrical factors which

turn out to be O(1). If the mean separation of the strings is much larger

than the scale of wiggles on individual strings, these wiggles will cause loops

to break off and the long strings will straighten out. The straightening wiU

continue until the individual long strings are straight on the scale of the

separation of different strings. At that point the interactions among different

strings will randomize any individual long string, and give it the random walk

behavior. The fact that an individual wiggly string is straightened out by

the chopping off of loops is supported by statistical mechanics [8,9].

If the mean separation is initially smaller than then scale of wiggles,

the inter-string interactions will immediately act to introduce smaller scale

wiggles. Thus, no matter what the initial conditions, it seems natural for

the one scale behavior to settle in. It is important here that the motion of

the strings is relativistic, so the relevant time scales are also O(_). When

the effects of the expanding universe are taken into account, the one scale

behavior leads directly to the fixed point scaling evolution discussed above.

Although this one scale picture describes the general properties of the long

string quite well, Bennett and Bouchet argue that wiggles on long strings do

not get thoroughly straightened out by the chopping process, and there is

a residue of small wiggles which builds up over time [2]. The idea seems

to be that while statistically the straightening process is favored, the actual

string evolution does not explore phase space suf_clently well to realize this

behavior. None the less, they find that the scale of typical loops coming off

the network is given by the scale of the small scale wiggles.

The notion that phase space is not explored thoroughly by the strings does

not seem impossible to me, since the network is never truly in equilibrium.

However, I originally found the proposal by Bennett and Bouchet puzzling

because the scale of small scale wiggles (which I call A here) is the scale

on which most of their loops are produced. Clearly there are a great deal

of interactions occurring on the scale A. why should these interactions be



insu_dent to equilibrate the string on that scale? Furthermore, given that

A is such an important scale, why is the overall rate at which energy comes

otT the long string independent of A ? Bennett and Bouchet report that the

rate of energy loss only depends on _, which is the standard one scale result.

To further explore these issues I will work with the fiat spacetlme string

evolution equations. We will not he making signlt_cant errors in ne_ecting

the expansion of the universe because we are concerned with scales much

smaller than RH.

2.1 The Kibble-Turok Sphere and small scale struc-

ture

The strings are described by i(_, t) where _ is the position and _ runs along

the string. The flat spacetime string equations (the Nambu equations) are

[16,17l
_,(o.,0=/"(o-,0 -. (z)

subject to the gauge choice

_'. _" = 0 (2)

and

(_.)_÷ (/,)_- 1 (3)

where _ --- a_/ag and _ = a_/cq_r. Equation (2) means there are no lon-

gitudinal modes, while Eq. (3) chooses a particular parameterization with

constant energy per unit _. The general loop solution can be written in terms

of "right-movers" (_ and "left-movers" (b) and is given by:

1_(o-,0-- _ [_(o.-t) + ÷ (4)

Equations (2) and (3) translate into

(_), = (_',)a _ 1 (5)

so T and gt Lie on the surface of a sphere with radius 1 (the "Kibble-Turok

sphere"). Any solution to (1) represents a pair of curves on the Kibble-Turok

sphere, one for _(o" - t) and one for b"(_, + t). String self intersections can

result in sharp bends in the strings which, in the thin string limit used here

6



x

Figure i: A straight segment of string with its representation on the I_b-

ble-Tu_ok sphere

look like discontinuities in T and b' (or kinks). These kinks propagate along

the string but do not become less discontinuous.

Let us, for the moment, idealize the random walks of the one scale model

as per{ectly straight string segments connected by kinks. The curves _(cr)

and b(cr) are then also generally composed of straight segments connected by

kinks. A given segment of the string is made up of a left moving segment

and a right moving segment, so

1

= + (6)

• 1
and

As time evolves the left and right-movers go their separate ways and dif[erent

and bsegments get matched up to make new string segments. A given string

segment appears on the Kibble-Turok sphere as two points, one for _ and

one for _n (see Fig. 1).

Now let us introduce some smaller scale structure on the string, and let

us approximate it too by straight links connected by kinks. From now on

I will use the convention that "segments" refer to the large scale pieces (of

length _) which make up the one scale random walks. I will use the term



x

Figure 2: Small wiggles correspond to the scattering of points around their

average values on the Kibble-Turok sphere. Note that < T > and < b: > lie

i_ide the sphere. Here the di_onds are the T's and the x's are the b's

"links" for the straight bits that make up whatever small scale structure I

may be discussing. The segments are no longer represented by pairs of points

on the IGbble-Turok sphere, but by many points.

Figures 2 and 3 show how different small scale structure might appear

on the IGbble-Turok sphere. The points representing the individual links

are scattered around in the general area of the averages < _' > and < _1 >.

The greater the degree of scatter, the more sharply the wiggles appear on

the string.

2.2 Backtracking

As time evolves, different _ and b segments will be paired up together. This

process guarantees that at any time there will be segments somewhere on the

string network where _ _ ;> and < b _ point in nearly opposite directions

from each other. On these segments the _ _ _ is smaller than average, and

<_ _ _ is larger than average (see equations (6) and (7)). If the segments

were truly straight these occurrences would correspond to places where the

string was moving close to the speed of Ught. The small value of <_ _ :>

would then just reflect the fact that energy per unit physical length ((_,)-1)

is larger due to the high kinetic energy. (l_emember, we have parameterized
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Figure 3: Sharper wiggles correspond to broader scatter on the I_bble-Turok

sphere.

the string so there is constant energy per unit _.)

However, when < _ >_ - < b > on a wiggly segment there is another

effect that can occur, wl_ch I illustrate in Fig. 4. Due to the scatter on the

Kibble-Turok sphere, there can be individual Hnks which point opposite to

the direction of the whole segment. In other words, the presence of wiggles on

< _ > and < b > can result in back-tracking when the overall length of the

segment is short. The increased energy per unit physical length associated

with small < _ > comes not only from kinetic energy in this case, but from

the crin]c_g up of the string as we]].

It seems natural that a string which back-tracks on itself will have a

certain number of self intersection, and these intersections will usually break

off loops of a size O(A), the size of the back-tracking links. However, the

overall length which back-tracks depends on the length of the whole segment

because the < _ >_. - < _ > condition which causes back-tracklng persists

over a length _.

It is particularly interesting that the tendency to back-track is determined

not by the number of wiggles per segment (_/A), but by the degree of scatter,

or "sharpness" of the wiggles. Figure 5 shows a segment with more, but

smaller wiggles than those depicted in Fig. 3. In some sense the segment in

Fig. 5 might seem to be a better approximation to a straight segment, but

it has just as much scatter as the segment in Fig. 3. One would expect the



Figure 4: When < _ >_ - < b > some links (for example the cir-

cled points) point in a direction opposite to that of the segment and cause

"back-tracking".

Figure 5: This segment may look smoother than the one in Fig. 3, but it

has the same degree of scatter on the Kibble-Turok sphere
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tendencyto back-track to bejust asgreat in either case. When < _ >,_ - <

> it would seem that the same proportion of energy would be tlecl up in

crinkling rather than in kinetic energy, so the smoother looking segment in

Fig. 5 is really no better an approximation to a truly smooth segment (for

which small _' would be exclusively clue to higher kinetic energy).

This discussion has lead to a simple picture in which the scale of loops

breaking off the long string is set by the scale of wiggles, A, while the rate at

which energy comes off the long string seems to be set by the length scale of

segments, _, over which _ and b axe each correlated. I will return to a more

careful treatment of this point in section 3.

Let me emphasize that the back-tracking occurs specifically when < _ >_

- < b >. This means that over most of the network (where _ and b"axe not

anti-paxallel) the wiggles may show no paxticulax tendency to back-track.

Non the less, these very wiggles will, from time to time, find themselves in

situations (when < _ > _- - < b">) where they cause back tracking to occur.

2.3 Time evolution of small scale structure

Let us now try to understand how the small scale structure evolves in time. In

fiat spacetime the left and fight-moving ].inks available to the network never

really change, and what is important is how they are rearranged with time.

Here we will still assume the rough validity of the one scale model, which

describes the eclttilibration of long strings into small loops via the growth

of the single scale, _. We will focus on how the Links get re-distributed to

form segments which have correlations on the (ever increasing) scale _ plus

a growing bath of infLultesimal loops. It will be useful to define the angle 8

which represents the characteristic angle between _ and < _ > on a typical

segment of long string. (The angle should be the same for both left and

right-movers.) If a].l the vectors _ for a given segment were plotted on the

IGbble-Turok sphere, they would occupy a roughly cone-shaped region (see

Fig. 6 ) with an angle proportional to 8.

The chopping of[ of loops from long string is the key process in the evolu-

tion of 8, but it produces two competing effects. The chopping off of a loop

removes some links from the long string, and leaves two links that were once

separate partially intact, and connected by a kink. All this would appear

visually on the Kibble-Turok sphere as the removal of some of the points, or
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Figure 6: A fight-moving segment represented on the IGbble-Turok sphere

with vectors for all the links drawn in (forming a "cone" with angle _ 0).

The heavy vector represents < _ >.

vectors corresponding to the links. But the loop chopping acts to straighten

the long string, so it has a tendency to merge the "cones" corresponding to

nearby segments together, into one longer segment. This is not done by mov-

ing any of the individual vectors, but rather by removing ones on the outer

edges until a new merged cone takes on an identity of its own. This effect

clearly tends to broaden 0, since as a given segment grows it incorporates

new links which probably are not initially well aligned.

On the other hand, viewed individually, the chopping of of loops tends to

preferentially remove segments which backtrack, since any closed loop rn,at

backtrack in some place, as depicted in Fig. 7. This effect reduces 0. The

competition between this elect and the merging of cones, which broadens 0,

must be well understood if one is to determine the evolution of 8. (I should

add here that it is not enough to count the kinks per unit _ as a measure of

wiggliness of the segments. The effect of a small loop breaking of[ increases

the number of kinks per _, but also smo0ths Out the segment. A segment

with many kinks can be very smooth if 0 is small!)

The statistical mechanics of strings tells us that the chopping process acts

to straighten out the long string, but we have seen how this can have two

opposing elects on the evolution of 0. On the scale of the mean long string

12



>

Figure 7: Loop chopping preferentially breaks of[ back-tracking (or larger 0)

links

separation (_ _) the straightening involves building up long segments out of

pieces of shorter ones that point in different directions. It is not surprising

that this process sharpens the wiggles and broadens 0. On scales smaller

tha_ _ where there already is some straightness (or correlation among Hnks),

the ef[ect of chopping is to enhance this straightness and reduce 0.

The interactions between different long strings tends to control the straight-

ening process by randomizing the long string on large scales. On the IGbble-

Turok sphere this has the ef[ect of dividing up cones which become "over

crowded" (segments that have become longer than average) by assigning

parts of them to dif[erent strings. The main ef[ect of this process is to insure

the strings are randomized on a scale _ which is roughly uniform throughout

the network, as we have already assumed. The interactions of the long strings

with small loops, however, provides another way that 0 can grow, since this

ef[ect adds randomly oriented links to the long string network.

2.4 A.n example: standard fiat spacetime simulations

I now apply the above discussion to the standard fiat spacetlme cosmic string

simulations [18,19], first performed by Smith and Vilenkin More recently

there has been a renewed interest in such simulations [20,3,21] because of

the inconclusive nature of the expanding universe computations. In con-
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Figure 8: All strings in the standard %ubic" flat spscetime simulations look

like this on the Kibble-Turok sphere.

trast to the expanding universe case the flat spacetime simulations £nd ezact

solutions to the Nambu equations, correct on all length scales. This is ac-

complished, however, by choosing very special initial conditions.

In these standard simulations one chooses initial conditions which are

made up straight segments connected by kinks, similar to the string confg-

urations I haw been discussing. The segments on the left and right-movers

are restricted to all be the same length (which I call A), and to point along

one of the z, y, or z axes, in either direction. For such initial conditions the

intersections always occur at kinks, and the restricted form of the left and

rlght-movers continues to hold throughout the evolution. I will call these

special string solutions "cubic solutions".

It is interesting to analyse these cubic solutions in the context of scatter

on the Kibble-Turok sphere. The representation of any of the solutions on the

Kibble-Turok sphere sits entirely on :i:z, :!:t/, and _z axes as depicted in Fig

8. In order for a "straight" segment to be represented in some other direction,

it must be composed of these six components in suitable proportions. Clearly

, no matter how small A is, there will be the same degree of scatter on the

Kibble-Turok sphere, and 0 will always be 0(45*).

For these special solutions, the different forces which evolve 0 must cancel

exactly, since 0 is independent of time. Although exact, these special solu-

tions will always be very bad approximations to smooth strings. No matter
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how small one makes zl there wiU be back-tracking due to the scatter on the

Kibble-Turok sphere, whereas back-tracking will not be present on a smooth

string.

This is an example where one might be tempted to consider a "continuum

limit" where as A --, 0 any smooth string configuration could be represented

by a cubic solution. Such a limit would not be correct, however, because

"numerical errors" (namely back-tracking) on the scale A would cause loop

production on the "scale of resolution', A, which would not occur for a truly

smooth string. These errors would not get smaller as A --, O, because even

though the sizes of individual erroneous loops would decrease, more would

be produced.

I should add that the back-tracking effect is not small. For example, if

a pair of neighboring right movin 8 links is randomly assigned a pair of left

moving links, chances are 1/36 that a closed loop is formed. Considering that

the overall chopping efficiency is O(1/10) in a scaling network, back-trackln8

must play a significant role.

Cubic solutions are inadequate at approximating smooth strings because

they are stuck with left and right-movers that only point in a few directions.

A real string network, of course, contains links pointing in a greater variety

of directions. In principle the loop chopping can systematically remove the

most deviant links and result in much smoother segments of string. One

wonders, however, how efficient the dynamics would be at making sure the

right segments were in the right places to produce smooth segments. (In the

language of the previous section, I am asking if the forces which reduce 0 are

all that efficient.) In the limit where this efficiency is poor, the real physics

of cosmic strings might closely resemble the physics of the cubic solutions.

3 Estimating loop production: Is there scal-
• ?lng.

Let us try to estimate the eft"ect of "back-tracking" on the rate of energy loss

from long string. In particular, I will discuss the total length lost into all

loops from a segment of length ( in a time _, Only in the case where this

rate depends only on _ can one expect the one scale model to be valid. The

arguments in this section are rough, and mainly meant to give a feeling for
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the complexity of the problem and for the likelihoodof scalingto occur.

Let us start by considering one (length _) right-moving segment as it

runs past a left-moving segment (alsolength _), a process which takes a time

_. During this time differentindividual leftand right movillg links willbe

matched up with one another in succession. A given seriesof right-moving

linkswillbreak offwhen itmeets up with a seriesof ieft-m0ving linkswhich

has equal length in trand equal but opposite net length in physical space.

(That is, if3 - _, = -(b2 - b,) ==_ _* = _2 which is the condition for a self

intersection. [22] ) In the course of a time _ a series of right-moving links

will have more than one chance to meet up with the "perfect" series of left

moving links to close off and form a loop.

Naively, one might think that if one halved A (holding _ fixed), twice

as much back-tracking would occur on a length _, and that would exactly

compensate for the fact that the typical loops produced would be half as

large.In that case the total length of stringlostfrom a length _ in a time

would be independent of A, and the one scale model would be valid.One

reason why this picture is too naive is that the smaller one makes A, the

more chances a given group of,say,fivelinkshas of finding a match in a time

_. The number of chances isproportional to _/A, so thisisone way the scale

A can enter the problem.

The scale A can enter in other ways as well. For example, as A gets

smallerthere willbe more opportunities forlonger bitsof string(made up of

more links)to back-track on themselves. This isjust because a length _ will

be made up of more links. Both the"effectsI have mentioned indicated the

energy lossrate willincrease as A gets small. This suggests the possibility

that for small enough A, loop production is su_cient to reallysmooth out

the long stringson that scale. Furthermore, this criticalvalue of A could

wellwind up being proportional to _,in which case the one scalemodel could

survive. A systematic analysis would be needed to determine ifthis isthe

case.

I have been tempted to use these arguments to build a specificmodel of

energy loss due to back-tracking. Do do so, however, one needs to fleshout

the picture in a number of ways. For example, one needs a model for how

$ evolves. And one needs a descriptionof how the correlationsamong the

kinks goes from being well correlated on scales O(_/2) to being much less

correlatedon the scale A. That is,one needs more detailsabout the starting
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point than can be spedfied by 0, _, and A alone. One can then model the

evolution of these quantities. I have not found a complete set of starting

assumptions that I have been happy with, so I have no further progress to

report here. However, this seems like an area that could be quite fruitful.

4 Conclusions

I have described how small scale wiggles on long string can lead to signifi-

cant production of loops whose sizes are given by the scale of those wiggles.

This effect occurs when right and left-moving segments which are roughly

anti-parallel get matched up for a period of time, causing back-tracking (or

crinkling) of the string. The length of string and period of time over which

this anti-parallel property is approximated can be much larger than the scale

set by the wiggles themselves. It is the importance of this larger scale that

makes such loop production particularly significant. Bennett and Bouchet

[2,4] describe how in their simulations macroscopic segments of long string

("parent regions") are removed due to the production of "essentially micro-

scopic" loops. What they see seems to fit nicely with the picture I have

described here.

Because the small scale structure can have such an important role in the

overall evolution of a string network, it must be well understood. For exam-

ple, as I emphasized in section 2.4, the standard "cubic" solutions used in fiat

spacetime simulations involve very specific choices of small scale behavior.

The fact that these solutions are exact does not mean they answer the ques-

tions you want to answer, unless the choice of small scale behavior matches

the physical problem at hand. Letting the scale of small structure go to zero

does not arbitrarily increase the applicability of the cubic solutions, because

macroscopic artifacts of the small scale structure remain.

Likewise, all curved spacetime numerical simulations make some assump-

tions about the small scale string structure. So fax, I believe none of these

assumptions have been carefully justified. The AT simulations use an algo-

rithm which introduced numerical diffusion on the scale of resolution. If one

accepts the AT results one is assuming that any sharp wiggles lost to the

diffusion would not have had much impact if they had been left in. On the

other hand, the BB simulations go to great trouble to avoid numerical dif-
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fusion, and they keep specific track of kinks. Nonetheless, it is unavoidable

that finite numerical schemes introduce numerical artifacts.

An artifact in the BB simulations involves the "merging" of kinks [2]

which they say occurs at some string intersections. The details of this merg-

ing process have yet to be pubUshed, but one is left wondering what the

effect of this process is on sharpness of wiggles on the string (that is, on 0 as

described in section 2,3). The production of a loop tends to smooth out the

string by preferentially removing the sharpest wiggles (see Fig. 7). In doing

so, the number of kinks on the long string is increased. If these kinks are

then merged, is the resulting kink sharper? If so, is this artifact sufficient to

change the physics results? These are questions which must be answered in

order to judge the validity of the algorithm.

It is clear that the assumptions about small scale behavior implicit in

the A T and BB algorithms are sufRciently different to yield different results.

From the numerical point of view, the best hope for progress lies with the

newer algorithms [2,6] which are designed to treat small scale structure more

carefully. For example, if the merging in the BB algorithm does appear to

be a 8 increasing process, perhaps the easiest test would be to substitute

the merging with a 0 decreasing version. I believe this would stiU give less

smoothing than AT's outright numerical diffusion, and if we are lucky, the

two merging algorithms might not give substantially different physics.

StiU, it would be much more satisfying if an analytic description of the

small scale structure on cosmic strings could be developed. Then we could

be confident in extrapolating our understanding to cosmic time scales. For

example, the discussion in section 3 suggested that the one scale model may

not be entirely correct, since the scale of small wiggles may introduce another

scale into the problem. We already see inc_cafions in flat spacetlme simu-

lations that the long strings might be deviating from the simple one scale

behavior [3,20,211 .

The one scale behavior _ observed in all the expanding universe string

simulations, but this could to some extent be an iUusion. In the expanding

universe case there are transients associated with the differences between the

initial conditions and the "_xed point" solution. If there are other transients

as well, initial conditions can be found where the two transients roughly can-

cel over the relatively short duration of a numerical simulation, suggesting

an incorrect fixed point solution. This problem appeared in the interpreta-
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tion of the first string simulations [23], where numerical artifacts resulted

in an artificially low quote for the scaling density. Even if the one of the

current simulations is essentially free of numerical artifacts, tl_s cancelling of

"transients" could be misleading us as to the validity of the one scale model.

In conclusion, the small scale structure on cosmic strings can have a

substantial impact on many different length scales. At this point I feel the

role of thls structure in the evolution of cosmic string networks has yet to be

pinned down. Although this issue is being handled with an increasing degree

of numerical sophistication[2,4,5,7,6], we would be much better off if we had

an analytical understanding of what was going on. The material discussed

here was designed to aid the intuition, but it also provides a framework

whithin which to further develop analytical methods.
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